
Designing Classes 

Check out DesigningClasses project from SVN 





It starts with good classes… 



 Come from nouns in the problem description 
 May… 
◦ Represent single concepts 
 Circle, Investment 
◦ Represent visual elements of the project 
 FacesComponent, UpdateButton 
◦ Be abstractions of real-life entities 
 BankAccount, TicTacToeBoard 
◦ Be actors 
 Scanner, CircleViewer 
◦ Be utility classes that mainly contain static methods 
 Math, Arrays, Collections 

Q1 



 Can’t tell what it does from its name 
◦ PayCheckProgram 

 
 Turning a single action into a class 
◦ ComputePaycheck 

 
 Name isn’t a noun 
◦ Interpolate, Spend 

Q2 

Function 
objects are an 
exception.  
Their whole 
purpose is to 
contain a single 
computation 

*See http://en.wikipedia.org/wiki/Code_smell 
         http://c2.com/xp/CodeSmell.html    

http://en.wikipedia.org/wiki/Code_smell
http://c2.com/xp/CodeSmell.html
http://c2.com/xp/CodeSmell.html
http://c2.com/xp/CodeSmell.html


 Cohesion 
 

 Coupling 



 A class should represent a single concept 
 Public methods and constants should be 

cohesive 
 Which is more cohesive? 

CashRegister 

double NICKEL_VALUE 
double DIME_VALUE 

double QUARTER_VALUE 

void add(int nickels, int 
dimes, int quarters) 

… 

CashRegister 

void add(ArrayList<Coin> coins) 
… 

Coin 

double getValue() 
Q3 



 When one class requires another class to do 
its job, the first class depends on the second 
 

 Shown on UML  
diagrams as: 
◦ dashed line 
◦ with open arrowhead 

CashRegister 

void add(ArrayList<Coin> coins) 
… 

Coin 

double getValue() 
Q4-Q6 



 Lots of dependencies == high coupling 
 Few dependencies == low coupling 

 
 
 
 
 
 

 Which is better?  Why? 

Q7 



 High cohesion 
 

 Low coupling 



 Accessor method: accesses information 
without changing any 
 

 Mutator method: modifies the object on 
which it is invoked 

Q8 



 Accessor methods are very predictable 
◦ Easy to reason about! 

 
 Immutable classes: 
◦ Have only accessor methods 
◦ No mutators 
 

 Examples: String, Double 
 

 Is Rectangle immutable? 



 Easier to reason about, less to go wrong 
 

 Can pass around instances “fearlessly” 

Q9 



 High cohesion 
 Low coupling 
 Class names are nouns  
◦ Method names are verbs 

 Immutable where practical 
◦ Document where not 

 Inheritance for code reuse 
 Interfaces to allow others to interact with your 

code 

Coming attractions 



See HW16 –Chess exercise 
Work in groups of three or 
four on the whiteboards 



Static fields and methods … 



 static members (fields and methods)… 
◦ are not part of objects 
◦ are part of the class itself 
 

 Mnemonic: objects can be passed around, but 
static members stay put 



 Cannot refer to this 
◦ They aren’t in an object, so there is no this! 

 
 Are called without an implicit parameter 
◦ Math.sqrt(2.0) 
 
 
 

 
◦ Inside a class, the class name is optional but much clearer to 

use (just like this for instance fields and methods) 
 

Class name, not object 
reference 



 The   main() method is static 
◦ Why is it static?   
◦ What objects exist when the program starts? 



 Helper methods that don’t refer to this 
◦ Example: creating list of Coordinates for glider 

 
 Utility methods like sin and cos that are not 

associated with any object 
 
◦ Another example: 
public class Geometry3D { 
    public static double sphereVolume(double radius) { 
        ... 
    } 
} 

Q10 



 We’ve seen static final fields 
 
 

 Can also have static fields that aren’t final 
◦ Should be private 
◦ Used for information shared between instances of a 

class 
 Example:  the number of times a particular method of 

the a class is called by ANY object of that class 

Q11 



 private static int nextAccountNumber = 100; 
 

 or use “static initializer” blocks: 
 public class Hogwarts { 

 private static ArrayList<String> FOUNDERS; 
 
 
 
 
 
 
 // … 
} 

 static { 
  FOUNDERS = new ArrayList<String>(); 
  FOUNDERS.add("Godric Gryfindor"); 
  // ... 
 } 



 Run the program in the polygon package 
 Read all the TODO’s in the Polygon class 
 Do and test the TODO’s for most number of 

sides, asking questions as needed 
 Do and test the TODO’s for least number of 

sides 
• You might find the constant  Integer.MAX_VALUE 

helpful 
 

Q12-Q13 
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