
Designing Classes

Check out DesigningClasses project from SVN

It starts with good classes…

 Come from nouns in the problem description
 May…
◦ Represent single concepts
 Circle, Investment
◦ Represent visual elements of the project
 FacesComponent, UpdateButton
◦ Be abstractions of real-life entities
 BankAccount, TicTacToeBoard
◦ Be actors
 Scanner, CircleViewer
◦ Be utility classes that mainly contain static methods
 Math, Arrays, Collections

Q1

 Can’t tell what it does from its name
◦ PayCheckProgram

 Turning a single action into a class
◦ ComputePaycheck

 Name isn’t a noun
◦ Interpolate, Spend

Q2

Function
objects are an
exception.
Their whole
purpose is to
contain a single
computation

*See http://en.wikipedia.org/wiki/Code_smell
 http://c2.com/xp/CodeSmell.html

http://en.wikipedia.org/wiki/Code_smell
http://c2.com/xp/CodeSmell.html
http://c2.com/xp/CodeSmell.html
http://c2.com/xp/CodeSmell.html

 Cohesion

 Coupling

 A class should represent a single concept
 Public methods and constants should be

cohesive
 Which is more cohesive?

CashRegister

double NICKEL_VALUE
double DIME_VALUE

double QUARTER_VALUE

void add(int nickels, int
dimes, int quarters)

…

CashRegister

void add(ArrayList<Coin> coins)
…

Coin

double getValue()
Q3

 When one class requires another class to do
its job, the first class depends on the second

 Shown on UML
diagrams as:
◦ dashed line
◦ with open arrowhead

CashRegister

void add(ArrayList<Coin> coins)
…

Coin

double getValue()
Q4-Q6

 Lots of dependencies == high coupling
 Few dependencies == low coupling

 Which is better? Why?

Q7

 High cohesion

 Low coupling

 Accessor method: accesses information
without changing any

 Mutator method: modifies the object on
which it is invoked

Q8

 Accessor methods are very predictable
◦ Easy to reason about!

 Immutable classes:
◦ Have only accessor methods
◦ No mutators

 Examples: String, Double

 Is Rectangle immutable?

 Easier to reason about, less to go wrong

 Can pass around instances “fearlessly”

Q9

 High cohesion
 Low coupling
 Class names are nouns
◦ Method names are verbs

 Immutable where practical
◦ Document where not

 Inheritance for code reuse
 Interfaces to allow others to interact with your

code

Coming attractions

See HW16 –Chess exercise
Work in groups of three or
four on the whiteboards

Static fields and methods …

 static members (fields and methods)…
◦ are not part of objects
◦ are part of the class itself

 Mnemonic: objects can be passed around, but
static members stay put

 Cannot refer to this
◦ They aren’t in an object, so there is no this!

 Are called without an implicit parameter
◦ Math.sqrt(2.0)

◦ Inside a class, the class name is optional but much clearer to

use (just like this for instance fields and methods)

Class name, not object
reference

 The main() method is static
◦ Why is it static?
◦ What objects exist when the program starts?

 Helper methods that don’t refer to this
◦ Example: creating list of Coordinates for glider

 Utility methods like sin and cos that are not

associated with any object

◦ Another example:
public class Geometry3D {
 public static double sphereVolume(double radius) {
 ...
 }
}

Q10

 We’ve seen static final fields

 Can also have static fields that aren’t final
◦ Should be private
◦ Used for information shared between instances of a

class
 Example: the number of times a particular method of

the a class is called by ANY object of that class

Q11

 private static int nextAccountNumber = 100;

 or use “static initializer” blocks:
 public class Hogwarts {

 private static ArrayList<String> FOUNDERS;

 // …
}

 static {
 FOUNDERS = new ArrayList<String>();
 FOUNDERS.add("Godric Gryfindor");
 // ...
 }

 Run the program in the polygon package
 Read all the TODO’s in the Polygon class
 Do and test the TODO’s for most number of

sides, asking questions as needed
 Do and test the TODO’s for least number of

sides
• You might find the constant Integer.MAX_VALUE

helpful

Q12-Q13

	CSSE 220 Day 16
	Questions?
	What is good�object-oriented design?
	Good Classes Typically
	What Stinks? Bad Class Smells*
	Analyzing Quality of Class Design
	Cohesion
	Dependency Relationship
	Coupling
	Quality Class Designs
	Accessors and Mutators Review
	Immutable Classes
	Immutable Class Benefits
	Quality Class Designs
	Class Design Exercise
	Static
	What is static Anyway?
	Static Methods
	When to Declare Static Methods
	When to Declare Static Methods
	Static Fields
	Two Ways to Initialize
	A Polygon exercise

